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Soil is a fundamental, non-renewable resource, and its health is inextricably linked to global food security,
environmental stability, and sustainable development. For decades, agricultural extension services have
worked to bridge the gap between scientific knowledge and farm-level practices, but they have often been
constrained by generalized, region-level recommendations that fail to capture the significant variability of
soil properties within and across farms. The dawn of the digital age has ushered in a paradigm shift, offering
powerful tools to characterize and manage this variability with unprecedented precision. This review paper
provides a comprehensive analysis of the role of Digital Soil Mapping (DSM) as a transformative approach
for empowering farmers through modern extension advisory systems. We delve into the synergistic
application of Remote Sensing (RS) and Geographic Information Systems (GIS) as the core technological
drivers of DSM. The paper systematically explores the evolution from traditional, labour-intensive soil
surveys to dynamic, data-driven digital mapping techniques. It details the mechanisms through which
various remote sensing platforms (satellite, aerial, UAV) and sensors (optical, thermal, radar) acquire critical
soil-related data, and how GIS is employed to integrate these with ancillary environmental data, perform
complex spatial analysis, and generate high-resolution predictive soil maps. The internationally recognized
SCORPAN model is examined as the conceptual framework underpinning these predictive efforts. A central
focus of this review is the practical integration of DSM outputs—such as maps of nutrient status, pH,
organic matter, and water-holding capacity—into tangible, farm-specific advisories. We critically assess its
application in developing site-specific nutrient management plans, optimizing irrigation scheduling, and
conducting land suitability analyses, thereby paving the way for precision agriculture. Through an examination
of global case studies, we highlight the successes and tangible benefits of DSM-based advisories, including
enhanced crop yields, reduced fertilizer costs, and improved environmental outcomes. However, the path to
widespread adoption is not without obstacles. The paper also presents a balanced discussion of the technical,
socio-economic, and institutional challenges, such as data accessibility, model accuracy, the digital divide,
and the need for extensive capacity building. Finally, we look to the future, exploring the potential of
emerging technologies like artificial intelligence, machine learning, hyperspectral imaging, and the Internet
of Things (IoT) to further refine DSM and deepen its impact. This review concludes that the integration of
DSM, powered by RS and GIS, into extension advisory systems represents a pivotal advancement in
agricultural science, offering a scalable and effective pathway to sustainable intensification and the
empowerment of farmers worldwide.
Key words: Digital Soil Mapping, Remote Sensing, GIS, Agricultural Extension, Precision Agriculture, Soil
Health, Site-Specific Nutrient Management, SCORPAN.
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ABSTRACT

Introduction
The foundation of human civilization and the

sustenance of its burgeoning population rests upon a thin,

fragile layer of earth: the soil. It is a complex, living
ecosystem that provides the medium for plant growth,
filters water, cycles nutrients, and serves as the largest
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terrestrial carbon store (Lal, 2015). The imperative to
feed a global population projected to exceed nine billion
by 2050, in the face of climate change and degrading
natural resources, places soil health at the forefront of
the international agenda for food security and
environmental sustainability (Godfray et al., 2010). For
centuries, farmers have relied on experience and traditional
knowledge to manage their land, while agricultural
extension services have served as the primary conduit
for disseminating scientific advancements and best
practices (Davis, 2008). However, a fundamental
challenge has persistently limited the efficacy of these
efforts: the inherent spatial variability of soil.

Traditional extension advisories have historically been
based on broad, regional soil surveys, resulting in “one-
size-fits-all” recommendations for fertilizer application,
irrigation, and crop selection. Such an approach inevitably
leads to over-application of inputs in some areas and under-
application in others, even within a single field (Cassman,
1999). This inefficiency not only curtails potential crop
yields and farmer profitability but also carries severe
environmental consequences, including nutrient runoff
leading to eutrophication of water bodies, greenhouse gas
emissions, and soil degradation (Tilman et al., 2002). The
core limitation of conventional soil survey methods is that
they are exceptionally costly, time-consuming, and labor-
intensive. The process of digging soil pits, collecting
samples, and conducting laboratory analyses is a slow
and arduous one, making it impractical to capture the
intricate mosaic of soil properties at a high resolution over
large areas (McBratney, Mendonça Santos, & Minasny,
2003).

In response to these challenges, a technological
revolution has been steadily gaining momentum over the
past few decades, promising to reshape our understanding
and management of soil resources. This revolution is
driven by the convergence of two powerful technologies:
Remote Sensing (RS) and Geographic Information
Systems (GIS). Remote sensing, the science of acquiring
information about the Earth’s surface without being in
physical contact with it, offers an unparalleled ability to
monitor vast landscapes rapidly and repeatedly
(Schowengerdt, 2007). GIS provides the platform to store,
manage, analyze, and visualize the massive volumes of
spatial data generated by RS and other sources,
transforming raw data into actionable intelligence
(Longley, Goodchild, Maguire, & Rhind, 2015).

The synergy between RS and GIS has given rise to
the field of Digital Soil Mapping (DSM), a paradigm that
creates and populates spatial soil information systems by
using mathematical and statistical models to predict soil

properties and classes from soil observations and
environmental covariates (Arrouays, McKenzie, &
Hempel, 2004; Lagacherie, McBratney, & Voltz, 2006).
Instead of treating the soil map as a static, manually
drawn polygon map, DSM produces continuous, high-
resolution digital representations of soil properties (e.g.,
pH, organic carbon, clay content) that can be readily
updated and integrated into decision-making models. This
approach does not aim to replace field sampling entirely
but to augment it, using a limited number of ground-truth
points to calibrate and validate predictive models that can
then be extrapolated across the landscape.

The integration of DSM into agricultural extension
advisory systems represents a transformative opportunity
to empower farmers. By providing detailed, field-specific
information about their most valuable asset, DSM enables
a move away from blanket recommendations towards
highly targeted, data-driven decisions. This is the essence
of precision agriculture: applying the right input, at the
right place, in the right amount, at the right time (Pierce
& Nowak, 1999). The potential benefits are manifold:
increased crop productivity and quality, optimized use of
costly inputs like fertilizers and water, reduced
environmental footprint, and enhanced resilience to climate
variability.

This review paper aims to provide a comprehensive
and critical analysis of the role of DSM, facilitated by RS
and GIS, in revolutionizing agricultural extension services.
The objectives of this paper are fourfold: 1) To trace the
evolution from conventional soil mapping to the digital
paradigm, outlining the core principles of DSM. 2) To
provide a detailed examination of the key technologies—
remote sensing and GIS—and the conceptual
frameworks, such as the SCORPAN model, that underpin
DSM. 3). To critically evaluate the practical applications
of DSM in extension advisories, focusing on site-specific
management, and to present evidence of its impact
through case studies. 4) To identify the significant
challenges—technical, socio-economic, and
institutional—that hinder the widespread adoption of DSM
and to explore future directions and emerging technologies
that hold the promise of overcoming these barriers. By
synthesizing the vast body of literature in this rapidly
advancing field, this paper seeks to build a compelling
case for the central role of digital soil mapping in building
a more productive, sustainable, and equitable future for
agriculture and empowering farmers to become stewards
of their land in the truest sense.
The Evolution of Soil Mapping: From Traditional
to Digital

The practice of mapping soils is a foundational activity
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in agricultural science, land use planning, and
environmental management. Understanding the
distribution of different soil types and their properties is
essential for determining agricultural potential, assessing
environmental risks, and making informed land
management decisions. The methods for achieving this
understanding have undergone a profound evolution,
moving from a qualitative, descriptive art to a quantitative,
predictive science. This transition from traditional soil
survey to Digital Soil Mapping (DSM) represents a
paradigm shift driven by technological innovation and a
changing perspective on the nature of soil variation.
The Legacy and Limitations of Conventional Soil
Surveys

The history of systematic soil mapping began in the
late 19th and early 20th centuries, driven by the need to
classify land for agriculture and taxation (Brevik, 2013).
These early efforts culminated in what is now considered
the conventional or traditional approach to soil survey.
This approach is fundamentally based on the “soil series”
concept, where soils are grouped into classes based on a
specific range of morphological, physical, and chemical
properties observed in a typical soil profile (Soil Survey
Staff, 1999). The process involves trained soil surveyors
traversing the landscape, observing the terrain, digging
soil pits or using augers at selected locations, and
describing the soil profiles. They identify boundaries
between different soil types based on changes in
vegetation, landform, and other visible cues. These
boundaries are then manually drawn onto aerial
photographs or topographic maps, resulting in a polygon
map where each polygon represents a specific soil
mapping unit (often a soil series or an association of
series).

This traditional methodology has created an invaluable
legacy. For over a century, it has been the basis for national

soil inventories worldwide, providing the fundamental data
for agricultural planning, land valuation, and environmental
regulation (Hartemink, 2008). The detailed soil profile
descriptions and the conceptual framework of soil genesis
developed through this work remain cornerstones of soil
science. However, the limitations of this approach have
become increasingly apparent in the context of modern
demands for high-resolution, quantitative, and dynamic
soil information.

The primary limitations of conventional soil surveys
are manifold. Firstly, they are incredibly resource-
intensive. The fieldwork is laborious, and the subsequent
laboratory analysis of soil samples is both expensive and
time-consuming, making the process slow and costly
(Western, 2005). Secondly, the resulting product—the
static polygon map—is inherently subjective. The
placement of boundaries between soil units depends
heavily on the individual surveyor’s judgment and
experience (Heuvelink& Webster, 2001). Thirdly, the
polygon map model presents a simplified, often inaccurate,
view of reality. It assumes that the soil within a given
polygon is homogeneous, which is rarely the case.
Significant variation exists within these mapped units, but
this “within-polygon” variability is lost in the final
representation (McBratney et al. ,  2003). This
simplification is a major drawback for applications like
precision agriculture, which require knowledge of this
very variability. Finally, conventional soil maps are static.
They are difficult and expensive to update, and therefore
often do not reflect changes in soil properties over time
due to land use change, management practices, or climate
change (Grunwald, 2009).
The Paradigm Shift to Digital Soil Mapping (DSM)

The emergence of Digital Soil Mapping (DSM) in
the late 20th century was a direct response to the
limitations of the traditional approach. DSM can be defined

Table 1: Studies Utilizing Geoinformatics for Site-Specific Nutrient Management.

Study Objective Key Technologies Used Key Findings Reference
To delineate management Grid soil sampling, Delineation of zones based on soil (Fridgen
zones for variable-rate yield monitor data, GIS properties and yield led to a 10% reduction in et al.,
nitrogen application in corn. clustering analysis. N fertilizer use with no loss in overall yield. 2004)
To predict soil organic Remote sensing DSM provided accurate SOC maps (Guo, Li,
carbon for precision (Landsat), DEM, (R² > 0.75), which were crucial for estimating Zhang, &
nitrogen management. regression kriging. the soil’s nitrogen-supplying capacity. Wang, 2012)
To map soil phosphorus PXRF, DEM, The combination of proximal sensing and (Kuang,
using portable X-ray random forest DSM produced high-resolution P maps that Mouazen, &
fluorescence (PXRF) & DSM. model. identified critical deficiency and surplus areas. Zude-Sasse, 2017)
To assess the economic Soil electrical cond- Variable-rate application increased farmer (Bongiovanni
and environmental benefits uctivity (EC) mapping, profit by $25/ha and reduced P runoff risk & Lowenberg-
of variable-rate P and K. grid sampling, GIS. by 15% compared to uniform application. DeBoer, 2004)



as “the creation and the population of a geographically
referenced soil database from field and laboratory data
coupled with environmental data through the use of
mathematical and statistical models” (Lagacherie et al.,
2006, p. 3). This definition highlights a fundamental shift
in philosophy. Instead of mapping discrete soil classes,
DSM focuses on predicting the continuous spatial
distribution of individual soil properties (e.g., percentage
of clay, pH, organic carbon content) or the probability of
the occurrence of a soil class at any given point in the
landscape.

The core principle of DSM is to leverage the
relationship between soil properties and their environment.
The formation and distribution of soils are not random;
they are controlled by a set of environmental factors.
This relationship was famously conceptualized by Hans
Jenny (1941) in his state-factor equation: S = f(cl, o, r, p,
t, ...), where soil (S) is a function of climate (cl), organisms
(o), relief (r), parent material (p), and time (t). DSM
operationalizes this concept by using readily available,
spatially exhaustive data on these environmental factors—
often called covariates—to predict soil properties at
unvisited locations.

The DSM workflow typically involves several key
steps (McBratney et al., 2003; Grunwald, 2016):

Data Compilation: This involves gathering two main
types of data: point data from soil observations (legacy
soil profile descriptions or new field samples) and spatially
continuous covariate data. The covariates are
environmental variables that represent the soil-forming
factors, such as digital elevation models (DEMs) and their
derivatives (slope, aspect, curvature), remote sensing
imagery (vegetation indices, surface temperature),
climatic data (precipitation, temperature), and geological
or parent material maps.

Model Calibration: A quantitative relationship is
established between the measured soil property at the
sample locations and the values of the environmental
covariates at those same locations. A wide array of
statistical and machine learning models are used for this
purpose, ranging from multiple linear regression to more
complex methods like regression kriging, random forests,
support vector machines, and neural networks.

Spatial Prediction: The calibrated model is then
applied to the complete grid of environmental covariate
data covering the entire study area. This generates a
continuous, high-resolution predictive map of the target
soil property.

Uncertainty Assessment: A crucial and often

overlooked step is to quantify the uncertainty associated
with the predictions. Since the map is based on a model,
it is not perfect. An uncertainty map provides users with
an estimate of the prediction error at each location, which
is vital for risk assessment and informed decision-making.

DSM has several benefits compared to the traditional
approach. It is more cost-effective and rapid, as it
maximizes the information gleaned from a limited number
of expensive soil samples by combining it with
inexpensive, readily available covariate data (Malone,
McBratney, & Minasny, 2017). It delivers quantitative,
high resolution maps of individual soil properties which
have much more applicability in modern environmental
modelling and precision agriculture compared to qualitative
polygon maps. The results are digital and become readily
adaptable in GIS and other forms of decision support
systems. Also, DSM is an open and replicable procedure.
Data and models are data and models involving
straightforward models, and the data can be updated and
refined as new data or superior models come on the
scene. This forms an interactive soil information system
and not a literal map that is unchangeable with the lapse
of time. Not only is DSM a technological upgrade of its
predecessor, but a conceptual shift in how soil information
will be conceptualized, analysed, and represented capable
of heralding a new age of data-driven soil management.
Core Technologies in Digital Soil Mapping

Digital Soil Mapping is not a standalone discipline
but rather an integrative science that stands on the
shoulders of several key technologies. At its heart, DSM
is a data-driven process that relies on the ability to acquire
vast amounts of environmental information and the
computational power to analyze it. The two most critical
technological pillars supporting modern DSM are Remote
Sensing (RS), which serves as the primary tool for data
acquisition over large areas, and Geographic Information
Systems (GIS), which provide the framework for data
management, analysis, and visualization.
Remote Sensing (RS) for Soil Data Acquisition

Remote sensing provides the “eyes in the sky” for
DSM, enabling the systematic and non-invasive
characterization of the Earth’s surface. Soil properties
themselves are often difficult to measure directly from
space, as the soil is frequently obscured by vegetation.
Therefore, RS is often used to measure soil properties
indirectly, by observing their influence on other surface
features (e.g., plant health, surface temperature) or by
measuring exposed soil surfaces (Ben-Dor, Heller, &
Banin, 1999). The data for DSM is acquired from a
variety of platforms and sensors.

1206 Priyanka Rani and Mani Bhushan



Platforms and Sensors
Satellite-based Platforms: Satellites provide the

workhorse data for regional and national-scale DSM.
They offer global coverage and regular revisit times,
making them ideal for long-term monitoring. Publicly
available data from programs like Landsat (USA) and
Sentinel (European Space Agency) have been
revolutionary for DSM, providing decades of multispectral
imagery at moderate spatial resolutions (10-30 meters)
for free (Wulder et al., 2012; Drusch et al., 2012).
Commercial satellites (e.g., WorldView, Planet) offer
much higher spatial resolutions (sub-meter), which are
suitable for farm-scale applications but come at a
significant cost.

Aerial Platforms: Aircraft and, more recently,
Unmanned Aerial Vehicles (UAVs or drones), bridge the
gap between satellite and ground observations. They can
be deployed on demand to collect data at very high to
ultra-high spatial resolutions (centimetres to meters).
UAVs are particularly transformative for precision
agriculture, as they allow for flexible, low-cost mapping
of individual fields at critical times during the growing
season (Zhang & Kovacs, 2012).

Sensors: The platforms carry a range of sensors,
each sensitive to different parts of the electromagnetic
spectrum:

Optical Sensors: These are the most common type
of sensor used in DSM. They measure reflected sunlight
in the visible, near-infrared (NIR), and shortwave-infrared
(SWIR) portions of the spectrum. Different soil minerals,
organic matter, and moisture content have distinct spectral
signatures, allowing for their quantitative estimation
(Stenberg et al., 2010). Hyperspectral sensors, which
measure hundreds of narrow spectral bands, offer much
more detailed information than multispectral sensors but
are less widely available.

Thermal Sensors: These sensors measure the
thermal infrared radiation emitted by the surface, which

is related to its temperature. Soil temperature is influenced
by its moisture content, texture, and color, providing
another avenue for indirect estimation of these properties
(Verstraeten et al., 2006).

Radar (Radio Detection and Ranging) Sensors:
Active sensors like radar emit their own microwave
energy and measure the backscattered signal.
Microwaves can penetrate clouds and, to some extent,
vegetation and the soil surface. The signal is highly
sensitive to the dielectric properties of the soil, which are
primarily governed by soil moisture, making radar an
excellent tool for mapping soil water content (Wagner,
Sabel, & Doubkova, 2008). The roughness of the surface
also influences the signal, which can be related to soil
texture and tillage practices.
Inferring Soil Properties from RS Data

Remote sensing data is used to derive a wide range
of covariates for DSM models. Key soil-related
parameters that can be inferred include:

Soil Organic Matter (SOM) and Carbon (SOC):
SOM tends to darken the soil, reducing its reflectance
across the visible and NIR spectrum. Numerous studies
have established strong correlations between soil
reflectance and SOM/SOC content, particularly for bare
soils (Ben-Dor et al., 1999; Vaudour et al., 2019).

Soil Texture: The proportion of sand, silt, and clay
influences many other soil properties, including water
retention and spectral reflectance. Clay minerals often
have specific absorption features in the SWIR region,
which can be detected by spectral sensors (Viscarra
Rossel, McGlynn, & McBratney, 2006).

Soil Moisture: As mentioned, both thermal and
radar remote sensing are highly effective for mapping
surface soil moisture. Wet soils are cooler than dry soils
due to evaporative cooling (thermal), and they have a
higher dielectric constant, which strongly affects the radar
signal (radar) (Petropoulos, Ireland, & Barrett, 2015).

Soil Salinity: High concentrations of salt on the soil
surface can form a crust that increases soil reflectance,
particularly in the visible spectrum. This allows for the
detection and mapping of salt-affected areas, which is
critical for land management in arid and semi-arid regions
(Allbed& Kumar, 2013).

Indirect Covariates: Perhaps the most common
use of RS in DSM is for deriving indirect covariates
related to the SCORPAN factors. Vegetation indices like
the Normalized Difference Vegetation Index (NDVI) are
calculated from optical data and serve as a powerful proxy
for the ‘Organisms’ factor, reflecting how soil propertiesFig. 1: Digital Soil Mapping Transforms Agriculture.
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influence plant growth (Pettorelli et al., 2005).
Geographic Information Systems (GIS) for Data
Integration and Analysis

If remote sensing provides the raw data, GIS provides
the digital workbench to turn that data into knowledge. A
GIS is a computer-based system designed to capture,
store, manipulate, analyze, manage, and present all types
of spatial or geographical data (Longley et al., 2015). Its
role in DSM is indispensable and multifaceted.

Data Management and Integration
DSM relies on integrating diverse datasets from

various sources, with different formats, projections, and
scales. GIS provides the tools to handle this complexity.
It allows a soil scientist to overlay and co-register multiple
layers of information, such as:

• Point data of soil sample locations with their
laboratory analysis results.

• Raster (grid-based) data from remote sensing
(e.g., NDVI, surface temperature).

• Raster data from Digital Elevation Models
(DEMs).

• Vector (polygon-based) data of geological or
traditional soil maps.

• Climate data, often interpolated from weather
station points.

By bringing all these datasets into a common
geographic framework, GIS makes it possible to extract
the values of all covariate layers at each soil sample
location, which is the essential first step for building a
predictive model.
Spatial Analysis and Modelling

The analytical power of GIS is central to DSM. GIS
software packages contain a vast array of tools for spatial
analysis, many of which are fundamental to the DSM
workflow:

Terrain Analysis: Using a DEM, GIS can calculate
a suite of terrain attributes that are powerful predictors
of soil properties. These include primary attributes like
elevation, slope, and aspect, as well as more complex
secondary attributes like topographic wetness index
(TWI), stream power index (SPI), and profile or plan
curvature. These attributes are proxies for the ‘Relief’
factor in soil formation, controlling the redistribution of
water, energy, and soil materials across the landscape
(Moore, Grayson, & Ladson, 1991).

Spatial Interpolation: GIS is used to create
continuous surfaces from point data. This can be for
creating climate maps from weather stations or for
geostatistical modelling in DSM. Geostatistics is a branch
of statistics that deals with spatial data, and techniques
like Kriging are a cornerstone of many DSM approaches.
Regression Kriging, for example, combines a regression
model based on environmental covariates with Kriging
of the model residuals, often resulting in more accurate
predictions than either method alone (Hengl, Heuvelink,
& Rossiter, 2007).

Model Implementation: While the statistical
modelling itself might be done in specialized software
(like R or Python), GIS is often used to apply the final
model to the covariate data layers to generate the
predictive soil maps. This often involves using “map
algebra” or raster calculator tools to implement the model
equation across the entire study area.
Visualization and Dissemination

Finally, GIS is the primary tool for visualizing the
outputs of DSM and communicating them to end-users.
It allows for the creation of high-quality, intuitive maps
that show the spatial patterns of soil properties. These
maps can be combined with other farm data (e.g., field
boundaries, infrastructure) to create decision-support
tools. Modern GIS technology is increasingly web-based,
allowing for the creation of interactive web maps and
mobile applications that can deliver soil information directly
to farmers and extension agents in the field (Sun, 2013).
This final step of effective visualization and dissemination
is what closes the loop, turning complex scientific models
into actionable advice that can empower farmers.

Fig. 2: Principles, Workflow and Benefits of Digital Soil
Mapping. Fig. 3: Smart Fertilizer Application via DSM.
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The SCORPAN Model: A Conceptual Framework
for DSM

While technology provides the tools for Digital Soil
Mapping, a robust conceptual framework is needed to
guide the selection of relevant environmental data and
the construction of predictive models. The most widely
accepted framework in the DSM community is the
SCORPAN model, an extension of Hans Jenny’s (1941)
classic factors of soil formation. The SCORPAN model
provides a structured and comprehensive basis for
quantitative soil-landscape modelling, ensuring that the
predictive models are not just statistical black boxes but
are rooted in pedological principles (McBratney et al.,
2003).

Jenny’s original equation, S = f(cl, o, r, p, t), posited
that any soil property (S) is a function of climate (cl),
organisms (o), relief or topography (r), parent material
(p), and time (t). This was a conceptual model that
explained how soils form and differ across landscapes.
The SCORPAN model reframes this concept for the
purpose of spatial prediction. It states that the variation
of a soil property can be modelled using quantitative
information on:

S = f (s, c, o, r, p, a, n)
Where:
s = soil properties themselves (using existing soil data

or spatial correlation)
c = climate (e.g., temperature, precipitation)
o = organisms or biota, including vegetation and

human activity
r = relief or topography (e.g., elevation, slope)
p = parent material or geology
a = age of the soil (time factor)
n = spatial position (x, y coordinates)
The SCORPAN model essentially serves as a

checklist for the DSM practitioner, prompting them to
seek out and incorporate data layers (covariates) that
represent each of these factors. Remote sensing and GIS
are the primary tools used to generate these spatially
explicit covariate layers.
Detailed Breakdown of SCORPAN Factors and
Their Data Sources

s : Soil Properties: This factor acknowledges that
the best predictor of a soil property at one location
is often the value of that same property at a
nearby location (spatial autocorrelation). It also
includes using other, more easily measured soil
properties to predict a target property. For

example, visible near-infrared (Vis-NIR)
spectroscopy data collected in the field can be
used to predict soil organic carbon (Viscarra
Rossel et al., 2006). Geostatistical techniques
like Kriging, which explicitly model spatial
autocorrelation, are the mathematical
embodiment of this factor.

c: Climate: Climate is a dominant control on soil
formation at regional and global scales,
influencing weathering rates, leaching, and the
type and amount of biomass production.

Data Sources: Covariates for climate are typically
derived from meteorological station data and interpolated
using GIS techniques to create continuous surfaces.
Common covariates include mean annual precipitation,
mean annual temperature, potential evapotranspiration,
and various aridity indices (Hengl et al., 2017). Global
climate datasets like WorldClim provide readily available,
high-resolution climate data for use in DSM.

o: Organisms: This factor encompasses the
influence of all living things, from microorganisms
to natural vegetation to human activities.
Vegetation affects soil formation by adding
organic matter, cycling nutrients, and stabilizing
the soil. Human activities, such as tillage,
fertilization, and land use change, can profoundly
alter soil properties over short timescales.

Data Sources: Remote sensing is the preeminent
tool for capturing this factor. Vegetation indices,
particularly the Normalized Difference Vegetation Index
(NDVI), are the most widely used covariates in DSM
(Pettorelli et al., 2005). These indices measure the density
and health of vegetation, serving as an excellent proxy
for biomass production and organic matter inputs. Land
use/land cover maps, also derived from satellite imagery,
provide direct information on human influence.

r: Relief (Topography): Relief governs the flow
of water, energy, and materials across the
landscape, leading to predictable patterns of soil
variation. For example, soils on steep slopes are
often thin due to erosion, while soils in depressions
are often deep, moist, and rich in organic matter
due to the accumulation of water and sediment.

Data Sources: The primary data source for relief is
the Digital Elevation Model (DEM). High-resolution
DEMs are now available globally (e.g., SRTM, ASTER
GDEM, and increasingly, LiDAR-derived DEMs). Using
GIS, a vast suite of terrain attributes can be derived from
the DEM to serve as covariates. These include primary
attributes like elevation, slope steepness, and aspect, and
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secondary or compound attributes like the Topographic
Wetness Index (TWI), which predicts areas of water
accumulation, plan and profile curvature, which relate to
erosion and deposition rates, and stream power index
(SPI) (Moore et al., 1991; Wilson & Gallant, 2000). These
DEM-derived attributes are often the most powerful
predictors in DSM at the landscape scale.

p: Parent Material: Parent material is the
geological material from which the soil has
formed. It determines the initial mineralogy and
texture of the soil, influencing its chemical and
physical properties.

Data Sources: Traditional geological maps are the
most common source of information on parent material.
These are typically vector polygon maps that can be
converted to a raster format in a GIS for use as a
categorical covariate. In some cases, airborne
geophysical surveys, such as gamma-ray spectrometry,
can provide more detailed, continuous data related to the
mineralogy of the surface, offering a powerful alternative
to traditional maps (Wilford, 2012).

a: Age (Time): The ‘age’ factor refers to the
amount of time that soil-forming processes have
been acting on the parent material. Older, more
stable landscapes tend to have more developed,
weathered soils than younger landscapes, such
as recently deposited floodplains or glaciated
areas.

Data Sources: Age is the most difficult factor to
quantify directly as a continuous spatial layer. It is often
represented by proxy variables. For example, geological
maps that show the age of different geological formations
can be used. In other cases, terrain attributes like the
distance from a river can serve as a proxy for the age of
floodplain soils. In many DSM studies, the age factor is
considered to be implicitly captured by the other
covariates.

n: Spatial Position: This factor is an explicit
recognition of spatial dependence that may not
be captured by any of the other environmental
factors. It is simply the geographic location (e.g.,
latitude and longitude coordinates). Including the
coordinates as covariates in a model can help to
capture broad, regional trends or gradients (e.g.,
north-south climatic trends) that are not fully
represented by the other available data layers.

By systematically considering each of these factors
and acquiring the best available spatial data to represent
them, the SCORPAN framework guides the development
of robust and pedologically meaningful predictive models.

It ensures that DSM is not merely a data-mining exercise
but a quantitative application of our fundamental
understanding of soil science, linking the digital outputs
back to the real-world processes that shape the soil
landscape.
Integrating DSM into Agricultural Extension
Advisory Systems

The ultimate value of Digital Soil Mapping is realized
when its outputs are translated into practical tools that
can inform on-farm decision-making. The high-resolution,
quantitative soil property maps generated by DSM are a
rich source of information, but they are not an end in
themselves. Their true power lies in their integration into
agricultural extension advisory systems, transforming the
way advice is generated and delivered to farmers. This
integration facilitates a shift from generalized, regional
recommendations to precise, data-driven, and site-specific
management strategies, which is the core tenet of
precision agriculture.
From Data to Decisions: The Advisory Workflow

The process of turning DSM outputs into actionable
advice involves several key steps. It begins with the
foundational soil property maps (e.g., pH, soil organic
carbon, texture, nutrient levels) and uses them as inputs
for agronomic models and decision rules.

Generation of Base Maps: The first step is the
creation of the core DSM products—high-resolution maps
of key soil properties that influence crop growth and
nutrient dynamics. These typically include soil texture
(clay, silt, sand percentages), soil organic carbon (SOC),
pH, cation exchange capacity (CEC), and potentially
macro- and micronutrient levels (e.g., phosphorus,
potassium).

Creation of Interpretive Maps: The base property
maps are then used to derive functional or interpretive
maps. For example, a map of soil organic carbon can be
converted into a map of nitrogen supply potential. Maps
of texture and SOC can be combined to create a map of
plant-available water holding capacity (PAWC). These
interpretive maps translate fundamental soil properties
into parameters with direct agronomic relevance.

Defining Management Zones: Instead of treating
a field as a single unit, it can be divided into smaller,
relatively homogeneous sub-units called management
zones. These zones are delineated using GIS by clustering
areas with similar soil properties, yield potential, or other
relevant characteristics (Fridgen et al., 2004). For
example, a field might be divided into a high-yield potential
zone with deep, fertile soil and a low-yield potential zone
on an eroded slope.

1210 Priyanka Rani and Mani Bhushan



Developing Zone-Specific Recommendations:
For each management zone, a specific recommendation
is generated. This is where agronomic science is applied.
For instance, using established crop response models, a
target yield is set for each zone based on its potential.
Then, the required amount of fertilizer is calculated to
achieve that yield, taking into account the existing nutrient
supply from the soil as indicated by the DSM maps. The
result is a prescription map that specifies the exact rate
of fertilizer, seed, or water to be applied at every location
within the field.

Delivery and Application: The final prescription
map is delivered to the farmer. In a high-tech scenario,
this digital map can be loaded directly into the controller
of a variable-rate technology (VRT) applicator on a
tractor, which uses GPS to automatically adjust the
application rate as it moves across the field (Robert, 2002).
In lower-tech contexts, the management zone map can
be delivered via a mobile app or even a printed map, and
the farmer can adjust application rates manually for
different parts of the field.
Key Applications in Extension Advisories

The integration of DSM into advisory systems has
several key applications that directly address the major
challenges in crop production and environmental
management.
Site-Specific Nutrient Management (SSNM)

This is arguably the most impactful application of
DSM. Conventional farming practice often involves
applying a uniform rate of fertilizer across an entire field.
DSM reveals that nutrient levels and crop nutrient
requirements can vary dramatically within that same field.
SSNM, also known as variable-rate fertilization, uses
DSM-derived maps to tailor fertilizer applications to these
variations (Fixen, 2005).

The process works as follows: A map of soil
phosphorus (P) and potassium (K) levels is created using
DSM. This map is then used to generate a fertilizer
recommendation map. Areas with low soil P and K
receive a higher rate of fertilizer to build up soil fertility
and meet crop demand, while areas that are already high
in these nutrients receive a lower rate or no fertilizer at
all. This “smart” application has multiple benefits. It
enhances the efficiency at which one uses fertilizers
ensuring that only the right amount of fertilizers used is
delivered to the crop at the right place, this can result in
higher and more even yields. It also provides significant
economic savings for the farmer by eliminating the
wasteful application of expensive fertilizers on non-
responsive areas (Bongiovanni & Lowenberg-DeBoer,

2004). The benefits of SSNM regarding environmental
concerns are that it can significantly mitigate the risk of
nutrient pollution. By avoiding over-application, it
minimizes the amount of excess nitrogen and phosphorus
that can be lost from the field through runoff or leaching,
protecting the quality of nearby water bodies (Mulla,
2013). The table below gives some illustrations of
researches that have highlighted the usefulness of DSM
and other technologies in driving nutrient use.
Water Management and Irrigation Scheduling

Water is often the most limiting factor in crop
production, and its efficient use is becoming increasingly
critical in the face of climate change and growing demand.
DSM provides essential information for precision
irrigation. By mapping soil texture (sand, silt, clay content)
and soil organic matter, DSM can be used to generate a
map of the soil’s plant-available water holding capacity
(PAWC) (Saxton & Rawls, 2006). This map shows which
parts of a field can store more water and which parts
will dry out more quickly. This information allows for
variable-rate irrigation, where water is applied more
frequently or in greater quantities to sandy, low-PAWC
zones and less frequently to clayey, high-PAWC zones.
This not only conserves water but also prevents problems
like waterlogging and nutrient leaching that can occur
with over-irrigation (Hedley, 2015). Furthermore, remote
sensing data, particularly from thermal and radar sensors,
can be used to directly map soil moisture content in near
real-time, providing farmers with up-to-the-minute
information on when and where to irrigate.
Land Suitability Analysis and Crop Selection

DSM can play a crucial role in strategic, long-term
planning at both the farm and regional levels. By combining
various soil property maps (e.g., pH, salinity, depth,
drainage) with climate and topographic data in a GIS, it
is possible to conduct a comprehensive land suitability
analysis (LSA) (Malczewski, 2004). LSA models are used
to determine the fitness of a particular piece of land to be
used to produce a certain thing, e.g., a crop. LSA may
be used by an extension agent to recommend to a farmer
what crops to plant in which soils that are available on
the farm, or which lands are not suitable to plant on and
which one should conserve. Locally, governments and
planning agents may find LSA of interest in creating
agricultural policies on zoning, which influence
development and conserve farms on prime land. Such
strategic applications of the soil information then assist in
making sure that the land is utilized in a sustainable and
optimal manner which improves the long term productivity
and resilience.
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Case Studies and Success Stories
The theoretical benefits of integrating DSM into

extension systems are compelling, but their real-world
impact is best illustrated through practical application.
Across the globe, numerous projects and initiatives have
demonstrated the tangible successes of this approach,
leading to improved livelihoods for farmers and more
sustainable agricultural systems. These case studies
highlight the adaptability of DSM techniques to different
agricultural contexts, from large-scale commercial
farming to smallholder systems.
Precision Agriculture in the US Midwest

The vast, highly mechanized farms of the US Midwest
have been fertile ground for the adoption of precision
agriculture technologies, with DSM at its core. For
decades, farmers and agricultural cooperatives have been
using grid soil sampling (taking samples from a regular
grid, e.g., every 2.5 acres) to create rudimentary soil
nutrient maps. While not DSM in the predictive modeling
sense, this was an early form of digital soil assessment.
The real advancement came with the integration of soil
electrical conductivity (EC) mapping and remote sensing.
Soil EC sensors are pulled behind a tractor and provide a
high-resolution map of the variation in soil texture, salinity,
and moisture-holding capacity (Corwin & Lesch, 2005).

A typical success story involves a corn and soybean
farmer in Illinois. The farmer first invests in an EC survey
of their fields. The resulting EC map clearly delineates
zones of heavy clay soil versus lighter loam soils. This
map is then used to guide “zone-based” soil sampling,
where fewer, more targeted samples are taken from each
zone instead of from a dense, uniform grid, saving
significant costs on lab analysis. The soil test results are
then extrapolated across each zone in a GIS. This reveals
that the clayey zones are high in potassium, while the
loam zones are deficient. Using this information, a
variable-rate prescription map for potassium fertilizer is
created. The farmer’s spreader, equipped with a GPS
and a variable-rate controller, applies a high rate of
fertilizer only on the loam zones and a zero or low rate on
the clay zones. The result, as documented in numerous
university extension studies, is a reduction in total
potassium fertilizer purchased by 20-40%, a direct cost
saving, with no negative impact on yield and a significant
reduction in the risk of nutrient runoff from the high-
potassium zones (Shannon et al., 2002). This success is
a direct result of moving from a uniform management
approach to a spatially variable one, enabled by digital
mapping.
The Africa Soil Information Service (AfSIS)

Agricultural challenges in Africa have huge magnitude
as it is characterized by fragmented farms, varied terrain
of soils and limited basic data on soil. The Africa Soil
Information Service (AfSIS), funded by the Bill &
Melinda Gates Foundation, was a landmark project that
aimed to address this information gap through the
systematic application of DSM (Hengl et al., 2015). The
project recognized that traditional soil surveys would be
too slow and expensive to cover the continent’s vast and
complex agricultural lands.

The AF-SIS methodology entailed nested and
hierarchical sampling design. On the continent sentinel
locations were formed that were of various agro
ecological regions. In these locations, thousands of soil
samples were obtained and tested through conventional
wet chemistry and the faster and cheaper technology of
infrared spectroscopy. This formed a huge library of soil
spectra. This point data was then combined with a vast
stack of environmental covariates derived from remote
sensing (MODIS imagery) and climate models. Using
machine learning models, the team generated the first-
ever high-resolution (250m) digital soil maps for the entire
African continent for key properties like organic carbon,
pH, sand content, and nutrient levels (Hengl et al., 2017).

The effective factor in success of AfSIS is not only
in the maps but in the use of it. The digital maps are
currently publicly available and form the layer of
foundation data of a multitude of extension advisories.
An example is tablets that are used as extension agents
in Tanzania and Ethiopia that operate programs with the
AfSIS soil data. When an agent visits a farmer, they can
pinpoint the farm’s location on the map and immediately
get an estimate of the local soil properties. This information
is then used to provide tailored advice on which fertilizers
to use (e.g., recommending phosphorus-based fertilizers
in P-deficient areas) and the appropriate application rates.
That gets rid of the former practice of blanket government
advice that so frequently fitted neither the local needs
nor the local climate. Early impact assessments have
shown that farmers following these data-driven
recommendations have seen significant yield increases
in maize and other staple crops (Jama & Pizarro, 2017).
AfSIS demonstrates the strength of the DSM in
democratizing soil data and empowering the smallholder
farmers; at continental level.
Managing Salinity in the Australian Wheatbelt

Large parts of the Australian wheatbelt suffer from
dryland salinity, a condition where saline groundwater
rises to the surface, killing crops and rendering land
unproductive. Managing this problem requires
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understanding the complex spatial patterns of soil salinity.
Traditional mapping was too coarse to be useful for on-
farm management. Australian researchers have been
pioneers in using a technique called electromagnetic
induction (EMI) surveying, a form of proximal sensing,
combined with DSM to tackle this issue.

A case study from Western Australia illustrates this
success. A farmer with persistent low-yield patches in a
field suspected salinity. An agricultural consultant
conducted an EMI survey, which provides a detailed map
of soil electrical conductivity, a strong proxy for salinity.
The EMI map revealed intricate patterns of high salinity
in low-lying parts of the field, which were not visible to
the naked eye. This DSM product was then used to create
a targeted management plan. The highly saline zones were
identified as unsuitable for wheat. Instead of continuing
to waste seed and fertilizer on these areas, the farmer
was advised to plant them with a salt-tolerant perennial
pasture grass (e.g., tall wheatgrass) (Wong & Asseng,
2006). The moderately saline areas received a lower rate
of nitrogen fertilizer, as high nitrogen can exacerbate the
effects of salinity on wheat. The non-saline areas were
managed for high yield potential. This targeted approach,
guided by the DSM map, turned a problem area into a
productive one. The farmer stopped losing money on the
saline patches, the perennial grasses helped to lower the
water table over time, and the overall profitability and
sustainability of the field were improved (Llewellyn,
2007). This case shows how DSM can be used not just
for input management but for strategic land use change
within a single field.

These case studies, from different continents and
agricultural systems, share a common thread: success
comes from using DSM to accurately characterize spatial
variability and then using that information to make more
intelligent, targeted management decisions. They
demonstrate that empowering farmers with precise
information about their soil is a universally effective
strategy for enhancing productivity, profitability, and
environmental stewardship.
Challenges and Future Directions

Despite the demonstrated successes and immense
potential of Digital Soil Mapping, its widespread adoption
as a standard tool in agricultural extension is not yet a
reality. A range of significant challenges—technical, socio-
economic, and institutional—must be addressed to unlock
its full potential. At the same time, the rapid pace of
technological advancement offers exciting new avenues
and future directions that promise to overcome many of
these hurdles and make DSM even more powerful.

Technical Challenges
Data Availability, Quality, and Cost: While remote

sensing data from public sources like Landsat and
Sentinel is free, its spatial resolution (10-30m) may be
too coarse for managing small, heterogeneous fields. High-
resolution commercial satellite imagery or data from
UAVs can be expensive to acquire and process.
Furthermore, in many parts of the world, reliable legacy
soil data for calibrating DSM models is scarce or of poor
quality. The cost and logistics of new field sampling
campaigns, though reduced by DSM, remain a significant
barrier.

Model Accuracy and Validation: The accuracy
of DSM predictions depends on the quality of the input
data and the appropriateness of the statistical model.
There is no single “best” model; the optimal choice
depends on the specific soil property, landscape, and
available data (Wadoux et al., 2018). Overfitting models
to the calibration data is a constant risk, leading to poor
predictive performance in new areas. Robust,
independent validation of the maps is a critical step that
is often neglected. Communicating the uncertainty of the
predictions to end-users in an understandable way is also
a major challenge. A map of soil pH is useful, but a map
of the uncertainty associated with that pH prediction is
essential for risk-aware decision-making.

Cloud Cover and Atmospheric Correction:
Optical remote sensing, a primary data source for DSM,
is hampered by cloud cover, which is a persistent problem
in tropical and temperate regions. This limits the
availability of usable imagery during critical periods of
the growing season. Accurately correcting for the effects
of atmospheric haze and aerosols to retrieve true surface
reflectance is a complex technical process that can
introduce errors into the data (Liang et al., 2002).

Sensing Depth: Most remote sensing techniques
measure properties of the immediate soil surface (the
top few centimeters). However, the entire root zone
(which can be a meter deep or more) is important for
crop growth. Relating surface properties to subsurface
properties is a major ongoing research challenge, often
requiring the integration of DSM with geophysical
methods (e.g., EMI) that can sense deeper into the soil
profile (Sudduth et al., 2010).
Socio-economic and Institutional Challenges

The Digital Divide and Capacity Building: The
technologies underpinning DSM—GIS, remote sensing,
and statistical modelling—require specialized skills and
computational resources. There is a significant “digital
divide” between developed and developing countries, and
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even within countries, between large commercial farms
and smallholders. A major bottleneck is the lack of trained
personnel. Extension agents, who are the critical link to
farmers, often lack the training to use these new digital
tools or to interpret their outputs correctly (Aker, 2011).
Extensive and continuous capacity building for both
extension staff and farmers is essential for successful
adoption.

Cost of Implementation and Return on
Investment: While DSM can lead to long-term savings,
the initial investment in technology (e.g., GPS, variable-
rate controllers), software, and expert consultation can
be substantial. For smallholder farmers, these costs are
often prohibitive. Demonstrating a clear and rapid return
on investment is crucial for convincing farmers to adopt
these new practices. This requires not just technical
success but also favorable market conditions and
supportive policies.

Data Ownership, Privacy, and Policy:  The
generation of vast amounts of farm-level data raises
important questions about data ownership, privacy, and
security. Who owns the soil data generated from a
farmer’s field—the farmer, the consultant who collected
it, or the government agency that funded the project?
There is a need for clear data governance policies that
protect farmers’ interests and ensure that data is used
ethically and for the public good (Bronson & Knezevic,
2016). Without such policies, farmers may be reluctant
to share their data, hindering the development of better
DSM models.
Future Directions and Emerging Technologies

The future of DSM is bright, with several emerging
technologies poised to address current challenges and
open up new frontiers.

Artificial Intelligence (AI) and Machine
Learning (ML): While ML models like random forests
are already common in DSM, the field is moving towards
more advanced deep learning techniques. Convolutional
Neural Networks (CNNs), for example, can automatically
learn relevant spatial features from imagery, potentially
leading to more accurate and robust predictive models
that require less manual feature engineering (Wadoux et
al., 2019).

Hyperspectral Imaging: The next generation of
satellite and airborne sensors will be hyperspectral,
capturing hundreds of narrow spectral bands instead of
the handful of broad bands captured by current
multispectral sensors. This wealth of spectral detail will
allow for the direct prediction of a much wider range of
soil properties (e.g., specific clay minerals, micronutrients)

with higher accuracy (Ben-Dor, Chabrillat, &Demattê,
2020).

The Internet of Things (IoT) and Proximal
Sensing: The proliferation of low-cost, in-field IoT
sensors will provide a continuous stream of real-time data
on soil moisture, temperature, and nutrient status. This
data can be assimilated into dynamic DSM models,
allowing soil maps to be updated in near real-time to reflect
changing conditions. The fusion of data from remote
sensors (satellites) with proximal sensors (on-the-ground)
and in-situ sensors (IoT) is a key area of future research
(Grunwald et al., 2015).

Cloud Computing and “Big Data” Analytics: The
massive datasets generated by modern RS and DSM
require significant computational power. Cloud computing
platforms like Google Earth Engine and Amazon Web
Services provide on-demand access to petabytes of
satellite imagery and the processing power to analyze it
at a global scale. These platforms are democratizing
access to DSM, allowing researchers and practitioners
anywhere in the world to build and deploy models without
needing their own supercomputers (Gorelick et al., 2017).

Integration with Farmer-centric Mobile
Applications: The final frontier is the “last mile” of
delivery. The future of extension lies in intuitive mobile
applications that hide the complexity of DSM from the
end-user. A farmer should be able to open an app, see a
simple map of their field showing “high” and “low”
productivity zones, and receive a clear, concise
recommendation (e.g., “Apply 2 bags of urea here, and
1 bag there”). The development of these user-friendly
interfaces is just as important as the development of the
underlying scientific models.

Conclusion
In achieving global food security in the sustainable

way radical shift needs to be in the way we perceive and
in the way we handle our soil resources. This paper has
presented the view that the marriage of Digital Soil
Mapping aided by synergist technologies of Remote
Sensing and Geographic Information Systems, and
agricultural extension advisory systems is a pillar of the
change. We have transformed an old, broad-based
system of soil mapping to a new paradigm of dynamic,
digital control, where the specific intelligence relating to
soil structure, soil fertility, nutrient levels, etc., can be
delivered into the hands of growers in a field-specific
fashion.

The transition between the traditional soil surveys
and its obvious limitations regarding the features of the
cost, time, and subjectivity to the data-driven quantitative
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method of DSM is an epoch-making development.
Through the application of the SCORPAN framework,
DSM helps turn our basic knowledge of soil-landscape
connections into real operations with a wide range of
environmental data on remote sensing along with other
sources to structure our predictions of the soil
characteristics with an accuracy and level of detail that
is unmatched. The high-res images of soil health,
nutritional condition and water-retention will no longer
just be academic eye candy and the derived planes of
data will be at the foundation of another layer of smart
farming.

As demonstrated through applications in site-specific
nutrient management, precision irrigation, and land
suitability analysis, DSM empowers farmers to move
beyond “one-size-fits-all” recipes. It allows them to use
inputs variably depending on the specific needs of various
areas of their land setting off a chain reaction of benefits:
increased crop yields, increased savings because
optimized input use and a substantial decrease in the
environmental impact of agriculture. The evidence
presented by the success stories of commercial farms of
the American Midwest, smallholder systems of Africa
and the salinity-affected landscapes of Australia is that
this is an effective and flexible approach to agriculture
across different set ups.

Nonetheless, this vision is not without its disturbances
in its realization via a global vision. There are technical
obstacles associated with data quality and model accuracy
and there are also formidable social economic obstacles
such the digital divide, capacity building which require
vast amounts of capacity building, and costly
implementation, which must be addressed systematically.
Data governance and farmer privacy are the crucial
problems and should acquire swift policy consideration
to develop trust confidence in a data-driven agricultural
system thriving.

It is really bright in future. The convergence of DSM
with artificial intelligence, hyperspectral imaging, the
Internet of Things, and cloud computing will undoubtedly
overcome many of today’s limitations, making soil
information more accurate, more accessible, and more
dynamic than ever before. The end result will be to design
totally smooth, easy to use advisory systems that can
take the most complex geospatial data and turn it into
simple to use actionable recommendations that will literally
have every farmer becoming a precision manager of his
own farm. To sum up, technology is not a panacea
although it has become the enabler. Successful
empowerment of farmers with the help of the digital soil

mapping will demand multi-disciplinary approach involving
the best of science and efficient transfer of knowledge,
institutional strength and realistic public policy. With this
twin prong approach we will not only be in a position to
harness the power of the digital revolution and save our
soils, nourish our people and in the process develop a
truly sustainable future agricultural practice.
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